Censoring refers to a situation in survival analysis where the event of interest is not observed for some of the individuals under study.

In this Statistical Primer, we’ll define three types of censoring often seen in survival analysis studies.

Censoring occurs when the information on the survival time is incomplete or only partially observed.

Censoring can have a significant impact on the analysis and interpretation of survival data. It is essential to appropriately handle censoring in survival analysis to obtain accurate estimates of survival times, covariate effects, and other related parameters.

There are different types of censoring in survival analysis:

  • Right-censoring: This occurs when a participant is still alive or event-free at the end of the study period. In other words, the follow-up time for the participant ends before the event occurs. This is the most common type of censoring in survival analysis.
  • Left-censoring: This occurs when the true event time is known to be less than a certain time, but the exact time is unknown. For example, if an individual is diagnosed with a disease before the study begins but the date of onset of the disease is not known, we have left-censoring.
  • Interval-censoring: This occurs when the event time is known to fall within a certain interval, but the exact time of the event is unknown. For example, if a person develops glaucoma in between visits to the optician but the exact onset is unknown, we have interval censoring.

Latest Resources

Tutorials

Multivariate joint longitudinal-survival models

Joint longitudinal-survival models have been widely developed, but there are many avenues of research where they are lacking in terms of methodological development, and importantly, accessible implementations. We think merlin fills a few gaps. In this post, we’ll take a look at the extension to modelling multiple continuous longitudinal outcomes, jointly with survival. For simplicity, I’ll concentrate […]
Read more

Tutorials

multistate v4.4.0: semi-parametric multi-state modelling

The headlines: predictms now supports the Cox model as a transition model, estimated using merlin or stmerlin Predictions from a multi-state Cox model are implemented using a simulation approach Supported predictions from a multi-state Cox model include transition probabilities, probability, and length of stay, los Let’s take a look at what we can now do with multistate and in particular, the predictms command. We’ll […]
Read more

Tutorials

Simulating survival data with a continuous time-varying covariate…the right way

In this post we’ll take a look at how to simulate survival data with a continuous, time-varying covariate. The aim is to simulate from a data-generating mechanism appropriate for evaluating a joint longitudinal-survival model. We’ll use the survsim command to simulate the survival times, and the merlin command to fit the corresponding true model. Let’s assume a proportional hazards […]
Read more

Statistical Primers

What is survival analysis?

Survival analysis is a statistical method used to analyse the time until an event of interest occurs. The key feature of survival analysis is that the outcome has two dimensions: – an event indicator (yes/no), and – the time spent at risk for the event All survival analyses require precise definitions of start and end of […]
Read more

Videos

Introduction to Epidemiological Study Designs

This video offers a comprehensive introduction to epidemiological study designs, emphasising their classification, key definitions, strengths, limitations, and practical applications. We will dive into the most commonly used study designs, exploring their structure, purpose, and the contexts in which they are most effective. Throughout the video, real-world case studies of landmark research will be used […]
Read more

Statistical Primers

What is the proportional hazards assumption?

Proportional hazards Proportional hazards in survival analysis means that the rate at which an event of interest occurs over time for two or more groups or individuals is proportional over time. Specifically, it assumes that the hazard ratio, which represents the relative rate of an event occurring between two groups or individuals, is constant over […]
Read more

Statistical Primers

What is censoring?

Censoring refers to a situation in survival analysis where the event of interest is not observed for some of the individuals under study. In this Statistical Primer, we’ll define three types of censoring often seen in survival analysis studies. Censoring occurs when the information on the survival time is incomplete or only partially observed. Censoring […]
Read more

Tutorials

Simulation, modelling and prediction with a non-linear covariate effect in survival analysis

Let’s begin. There will be a single continuous covariate, representing age, with a non-linear effect influencing survival. We’ll simulate survival times under a data-generating model that incorporates a non-linear effect of age. We’ll then fit some models accounting for the non-linear effect of age, and finally make predictions for specified values of age. Sounds simple, […]
Read more

Statistical Primers

What is immortal time bias?

Immortal time bias Immortal time bias is a type of bias that can occur in observational research when the study design allows for a period of time during which the outcome of interest cannot occur, often referred to as “immortal time”. Simply put, immortal time bias occurs when information from a future event is incorporated into the […]
Read more

Specialist subjects

Methods Development

Methods Development We provide expert guidance in finding the appropriate statistical approach to answer your question… and if there isn’t yet a method, well, we can develop one. While applying biostatistics to address your research question is essential, there may be times when existing methods fall short for your specific problem. In such cases, we’re […]
Read more

Videos

State-of-the-art statistical models for modern HTA

At @RedDoorAnalytics, we develop methodology and software for efficient modelling of biomarkers, measured repeatedly over time, jointly with survival outcomes, which are being increasingly used in cancer settings. We have also developed methods and software for general non-Markov multi-state survival analysis, allowing for the development of more plausible natural history models, where patient history can […]
Read more

Tutorials

Survival analysis with interval censoring

Interval censoring occurs when we don’t know the exact time an event occurred, only that it occurred within a particular time interval. Such data is common in ophthalmology and dentistry, where events are only picked up at scheduled appointments, but they actually occurred at some point since the previous visit. Arguably, we could say all survival data […]
Read more
All Resources