Censoring refers to a situation in survival analysis where the event of interest is not observed for some of the individuals under study.

In this Statistical Primer, we’ll define three types of censoring often seen in survival analysis studies.

Censoring occurs when the information on the survival time is incomplete or only partially observed.

Censoring can have a significant impact on the analysis and interpretation of survival data. It is essential to appropriately handle censoring in survival analysis to obtain accurate estimates of survival times, covariate effects, and other related parameters.

There are different types of censoring in survival analysis:

  • Right-censoring: This occurs when a participant is still alive or event-free at the end of the study period. In other words, the follow-up time for the participant ends before the event occurs. This is the most common type of censoring in survival analysis.
  • Left-censoring: This occurs when the true event time is known to be less than a certain time, but the exact time is unknown. For example, if an individual is diagnosed with a disease before the study begins but the date of onset of the disease is not known, we have left-censoring.
  • Interval-censoring: This occurs when the event time is known to fall within a certain interval, but the exact time of the event is unknown. For example, if a person develops glaucoma in between visits to the optician but the exact onset is unknown, we have interval censoring.

Latest Resources

Videos

State-of-the-art statistical models for modern HTA

At @RedDoorAnalytics, we develop methodology and software for efficient modelling of biomarkers, measured repeatedly over time, jointly with survival outcomes, which are being increasingly used in cancer settings. We have also developed methods and software for general non-Markov multi-state survival analysis, allowing for the development of more plausible natural history models, where patient history can […]
Read more

Specialist subjects

Methods Development

Methods Development We provide expert guidance in finding the appropriate statistical approach to answer your question… and if there isn’t yet a method, well, we can develop one. While applying biostatistics to address your research question is essential, there may be times when existing methods fall short for your specific problem. In such cases, we’re […]
Read more

Videos

Multilevel (hierarchical) survival models: Estimation, prediction, interpretation

Hierarchical time-to-event data is common across various research domains. In the medical field, for instance, patients are often nested within hospitals and regions, while in education, students are nested within schools. In these settings, the outcome is typically measured at the individual level, with covariates recorded at any level of the hierarchy. This hierarchical structure […]
Read more

Tutorials

Simulation and estimation of three-level survival models: IPD meta-analysis of recurrent event data

In this example I’ll look at the analysis of clustered survival data with three levels. This kind of data arises in the meta-analysis of recurrent event times, where we have observations (events or censored), k (level 1), nested within patients, j (level 2), nested within trials, i (level 3). Random intercepts The first example will […]
Read more

Statistical Primers

What is the proportional hazards assumption?

Proportional hazards Proportional hazards in survival analysis means that the rate at which an event of interest occurs over time for two or more groups or individuals is proportional over time. Specifically, it assumes that the hazard ratio, which represents the relative rate of an event occurring between two groups or individuals, is constant over […]
Read more

Statistical Primers

What is survival analysis?

Survival analysis is a statistical method used to analyse the time until an event of interest occurs. The key feature of survival analysis is that the outcome has two dimensions: – an event indicator (yes/no), and – the time spent at risk for the event All survival analyses require precise definitions of start and end of […]
Read more

Statistical Primers

What is the Cox model?

The Cox model The Cox model, also known as the proportional hazards model, is a popular statistical tool used to analyse survival data. It was developed by British statistician Sir David Cox, and published in 1972. It has gained popularity largely by avoiding making parametric assumptions about the shape of the baseline rate in a […]
Read more

Tutorials

Joint longitudinal and competing risks models: Simulation, estimation and prediction

This post takes a look at an extension of the standard joint longitudinal-survival model, which is to incorporate competing risks. Let’s start by formally defining the model. We will assume a continuous longitudinal outcome, $$y_{i}(t) = m_{i}(t) \epsilon_{i}(t)$$ where $$m_{i}(t) = X_{1i}(t)\beta_{1} + Z_{i}(t)b_{i}$$ and \(\epsilon_{i}(t)\) is our normally distributed residual variability. We call \(m_{i}(t)\) our […]
Read more

Tutorials

An introduction to joint modelling of longitudinal and survival data

This post gives a gentle introduction to the joint longitudinal-survival model framework, and covers how to estimate them using our merlin command in Stata. A joint model consists of a continuous, repeatedly measured (longitudinal) outcome, and a time-to-event, with the two models linked by random effects, or functions of them. Let’s formally define everything we need. For […]
Read more

Specialist subjects

Clinical Trial Services

Clinical Trial Services Biostatistics services of RDA are the cornerstone of clinical trial design, execution, and interpretation. Biostatistical support by RDA will ensure that your clinical development programme and inherent studies are scientifically rigorous, appropriately powered, and capable of generating reliable evidence for regulatory approval and clinical use. RDA’s expertise for clinical development is focused […]
Read more

Tutorials

Joint frailty models for recurrent and terminal events

In this post we’re going to take a look at joint frailty models, and how to fit them with our merlin command. Importantly, we’ll also discuss how to interpret the results. Joint frailty models An area of intense research in recent years is in the field of joint frailty models, which has become the commonly used name for […]
Read more

Tutorials

Flexible parametric survival analysis with frailty

This example takes a look at incorporating a frailty, or random intercept, into a flexible parametric survival model, and how to fit them in Stata. First we’ll use merlin to estimate our model, and then the more user-friendly wrapper function stmixed. More details on these models can be found in the following papers: Crowther MJ, Look MP, Riley […]
Read more
All Resources