Censoring refers to a situation in survival analysis where the event of interest is not observed for some of the individuals under study.

In this Statistical Primer, we’ll define three types of censoring often seen in survival analysis studies.

Censoring occurs when the information on the survival time is incomplete or only partially observed.

Censoring can have a significant impact on the analysis and interpretation of survival data. It is essential to appropriately handle censoring in survival analysis to obtain accurate estimates of survival times, covariate effects, and other related parameters.

There are different types of censoring in survival analysis:

  • Right-censoring: This occurs when a participant is still alive or event-free at the end of the study period. In other words, the follow-up time for the participant ends before the event occurs. This is the most common type of censoring in survival analysis.
  • Left-censoring: This occurs when the true event time is known to be less than a certain time, but the exact time is unknown. For example, if an individual is diagnosed with a disease before the study begins but the date of onset of the disease is not known, we have left-censoring.
  • Interval-censoring: This occurs when the event time is known to fall within a certain interval, but the exact time of the event is unknown. For example, if a person develops glaucoma in between visits to the optician but the exact onset is unknown, we have interval censoring.

Latest Resources

Specialist subjects

Clinical Trial Services

Clinical Trial Services Biostatistics services of RDA are the cornerstone of clinical trial design, execution, and interpretation. Biostatistical support by RDA will ensure that your clinical development programme and inherent studies are scientifically rigorous, appropriately powered, and capable of generating reliable evidence for regulatory approval and clinical use. RDA’s expertise for clinical development is focused […]
Read more

Videos

Introduction to Epidemiological Study Designs

This video offers a comprehensive introduction to epidemiological study designs, emphasising their classification, key definitions, strengths, limitations, and practical applications. We will dive into the most commonly used study designs, exploring their structure, purpose, and the contexts in which they are most effective. Throughout the video, real-world case studies of landmark research will be used […]
Read more

Tutorials

Simulation and estimation of three-level survival models: IPD meta-analysis of recurrent event data

In this example I’ll look at the analysis of clustered survival data with three levels. This kind of data arises in the meta-analysis of recurrent event times, where we have observations (events or censored), k (level 1), nested within patients, j (level 2), nested within trials, i (level 3). Random intercepts The first example will […]
Read more

Tutorials

A user-defined/custom hazard model

This tutorial will illustrate some of the more advanced capabilities of merlin when modelling survival data, but with the aim of using an accessible example. During my PhD, Paul Lambert and I developed stgenreg in Stata for modelling survival data with a general user-specified hazard function, with the generality achieved by using numerical integration to calculate the cumulative hazard […]
Read more

Tutorials

Simulation, modelling and prediction with a non-linear covariate effect in survival analysis

Let’s begin. There will be a single continuous covariate, representing age, with a non-linear effect influencing survival. We’ll simulate survival times under a data-generating model that incorporates a non-linear effect of age. We’ll then fit some models accounting for the non-linear effect of age, and finally make predictions for specified values of age. Sounds simple, […]
Read more

Specialist subjects

Real-World Evidence (RWE)

Real-World Evidence Real-world evidence (RWE) refers to data and information that, unlike data generated in clinical trials conducted in controlled environments, has been obtained from everyday clinical practice, patient registers, or other sources outside the clinical trial setting. RWE plays a crucial role in complementing traditional clinical trial data, providing insights into the safety, effectiveness, […]
Read more

Videos

Multilevel (hierarchical) survival models: Estimation, prediction, interpretation

Hierarchical time-to-event data is common across various research domains. In the medical field, for instance, patients are often nested within hospitals and regions, while in education, students are nested within schools. In these settings, the outcome is typically measured at the individual level, with covariates recorded at any level of the hierarchy. This hierarchical structure […]
Read more

Tutorials

Defining a transition matrix for multi-state modelling

In this post we’ll take a look at how to define a custom transition matrix for use with our multistate package in Stata. The transition matrix A transition matrix governs the movement of a process between possible states. Within multi-state survival analysis, and particularly, the implementation of multi-state models in Stata, the transition matrix contains the most […]
Read more

Statistical Primers

What is censoring?

Censoring refers to a situation in survival analysis where the event of interest is not observed for some of the individuals under study. In this Statistical Primer, we’ll define three types of censoring often seen in survival analysis studies. Censoring occurs when the information on the survival time is incomplete or only partially observed. Censoring […]
Read more

Specialist subjects

Applied Biostatistics

Applied Biostatistics Biostatistics plays a crucial role in advancing medical research. Whether it’s clinical trials, epidemiological studies, or pre-clinical research, biostatistics is essential for drawing meaningful, impactful conclusions from complex data. Our team consists of internationally recognized experts in applied biostatistics, with deep experience in a wide range of areas such as survival analysis, multi-state […]
Read more

Statistical Primers

What is the proportional hazards assumption?

Proportional hazards Proportional hazards in survival analysis means that the rate at which an event of interest occurs over time for two or more groups or individuals is proportional over time. Specifically, it assumes that the hazard ratio, which represents the relative rate of an event occurring between two groups or individuals, is constant over […]
Read more

Tutorials

Joint longitudinal-survival models with time-dependent effects (non-proportional hazards)

In this post we’ll focus on how to model time-dependent effects (non-proportional hazards), specifically within a joint longitudinal-survival model. Now joint models are becoming commonplace in medical research, but as always, the fundamentals still matter, and indeed are often ignored. We’re going to look at how to account for time-dependency in both baseline covariates in […]
Read more
All Resources