Censoring refers to a situation in survival analysis where the event of interest is not observed for some of the individuals under study.

In this Statistical Primer, we’ll define three types of censoring often seen in survival analysis studies.

Censoring occurs when the information on the survival time is incomplete or only partially observed.

Censoring can have a significant impact on the analysis and interpretation of survival data. It is essential to appropriately handle censoring in survival analysis to obtain accurate estimates of survival times, covariate effects, and other related parameters.

There are different types of censoring in survival analysis:

  • Right-censoring: This occurs when a participant is still alive or event-free at the end of the study period. In other words, the follow-up time for the participant ends before the event occurs. This is the most common type of censoring in survival analysis.
  • Left-censoring: This occurs when the true event time is known to be less than a certain time, but the exact time is unknown. For example, if an individual is diagnosed with a disease before the study begins but the date of onset of the disease is not known, we have left-censoring.
  • Interval-censoring: This occurs when the event time is known to fall within a certain interval, but the exact time of the event is unknown. For example, if a person develops glaucoma in between visits to the optician but the exact onset is unknown, we have interval censoring.

Latest Resources

Tutorials

Flexible parametric survival analysis with frailty

This example takes a look at incorporating a frailty, or random intercept, into a flexible parametric survival model, and how to fit them in Stata. First we’ll use merlin to estimate our model, and then the more user-friendly wrapper function stmixed. More details on these models can be found in the following papers: Crowther MJ, Look MP, Riley […]
Read more

Tutorials

Simulation, modelling and prediction with a non-linear covariate effect in survival analysis

Let’s begin. There will be a single continuous covariate, representing age, with a non-linear effect influencing survival. We’ll simulate survival times under a data-generating model that incorporates a non-linear effect of age. We’ll then fit some models accounting for the non-linear effect of age, and finally make predictions for specified values of age. Sounds simple, […]
Read more

Specialist subjects

Real-World Evidence (RWE)

Real-World Evidence Real-world evidence (RWE) refers to data and information that, unlike data generated in clinical trials conducted in controlled environments, has been obtained from everyday clinical practice, patient registers, or other sources outside the clinical trial setting. RWE plays a crucial role in complementing traditional clinical trial data, providing insights into the safety, effectiveness, […]
Read more

Specialist subjects

Methods Development

Methods Development We provide expert guidance in finding the appropriate statistical approach to answer your question… and if there isn’t yet a method, well, we can develop one. While applying biostatistics to address your research question is essential, there may be times when existing methods fall short for your specific problem. In such cases, we’re […]
Read more

Videos

Introduction to Epidemiological Study Designs

This video offers a comprehensive introduction to epidemiological study designs, emphasising their classification, key definitions, strengths, limitations, and practical applications. We will dive into the most commonly used study designs, exploring their structure, purpose, and the contexts in which they are most effective. Throughout the video, real-world case studies of landmark research will be used […]
Read more

Statistical Primers

What is censoring?

Censoring refers to a situation in survival analysis where the event of interest is not observed for some of the individuals under study. In this Statistical Primer, we’ll define three types of censoring often seen in survival analysis studies. Censoring occurs when the information on the survival time is incomplete or only partially observed. Censoring […]
Read more

Tutorials

Joint longitudinal and competing risks models: Simulation, estimation and prediction

This post takes a look at an extension of the standard joint longitudinal-survival model, which is to incorporate competing risks. Let’s start by formally defining the model. We will assume a continuous longitudinal outcome, $$y_{i}(t) = m_{i}(t) \epsilon_{i}(t)$$ where $$m_{i}(t) = X_{1i}(t)\beta_{1} + Z_{i}(t)b_{i}$$ and \(\epsilon_{i}(t)\) is our normally distributed residual variability. We call \(m_{i}(t)\) our […]
Read more

Tutorials

Multivariate joint longitudinal-survival models

Joint longitudinal-survival models have been widely developed, but there are many avenues of research where they are lacking in terms of methodological development, and importantly, accessible implementations. We think merlin fills a few gaps. In this post, we’ll take a look at the extension to modelling multiple continuous longitudinal outcomes, jointly with survival. For simplicity, I’ll concentrate […]
Read more

Statistical Primers

What is the Cox model?

The Cox model The Cox model, also known as the proportional hazards model, is a popular statistical tool used to analyse survival data. It was developed by British statistician Sir David Cox, and published in 1972. It has gained popularity largely by avoiding making parametric assumptions about the shape of the baseline rate in a […]
Read more

Tutorials

Joint frailty models for recurrent and terminal events

In this post we’re going to take a look at joint frailty models, and how to fit them with our merlin command. Importantly, we’ll also discuss how to interpret the results. Joint frailty models An area of intense research in recent years is in the field of joint frailty models, which has become the commonly used name for […]
Read more

Statistical Primers

What are competing risks?

Competing risks In survival analysis, competing risks refer to the situation when an individual is at risk of experiencing an event that precludes the event under study to occur. Competing risks commonly occur in studies of cause-specific mortality, as all other causes of death than the one under study might happen before the individuals “have […]
Read more

Tutorials

multistate v4.4.0: semi-parametric multi-state modelling

The headlines: predictms now supports the Cox model as a transition model, estimated using merlin or stmerlin Predictions from a multi-state Cox model are implemented using a simulation approach Supported predictions from a multi-state Cox model include transition probabilities, probability, and length of stay, los Let’s take a look at what we can now do with multistate and in particular, the predictms command. We’ll […]
Read more
All Resources